UK Health Data Analytics Network Inaugural Workshop

6th – 7th January 2016, Manchester

(Wordle Generated from all ideas submitted by attendees)

DRAFT

Contents

Introduction	. 1
6th – Healthcare Opportunities	. 5
Overview Tree Map	7
Well Sorted Document	.9
Meeting Proforma	22
Elevator Pitch Video Playlist	27
Network Visualisation	28
7th – Research Challenges	33
Overview Tree Map	35
Well Sorted Document	37
Meeting Proforma	49
Elevator Pitch Video Playlist	54
Networking Visualisation	55
Miscellaneous Meeting Details	59
Agenda	61
Meeting Photos	63

On the 6th and 7th of January, 2016 the UK Health Data Analytics Network held their inaugural workshop in Manchester. Before the meeting, all attendees were asked to submit a single answer to two different questions, using the Well Sorted meeting organisation tool. The answers to these questions were then clustered and discussed separately on the two days of the meeting.

Those questions were as follows:

6th (Healthcare Opportunities): "Describe one important opportunity for data science to improve healthcare."

7th (Research Challenges):

"Describe one important data science research challenge posed by healthcare data and application."

In the rest of this document, the documentation generated by both Well Sorted and the attendees will be collated.

First, we present the information about the Healthcare Opportunities question (behind the first divider). Second, we present the information about the Research Challenges question (behind the second divider). Finally, we present general details from the meeting, such as the agenda and photos taken during the meeting.

UK Health Data Analytics Network Inaugural Workshop

Chancellors Hotel, Manchester

Our Speakers

Professor Ann Blandford, Director of UCL Institute of Digital Health, The Alan Turing Institute

Ann Blandford is Professor of Human–Computer Interaction at University College London and Director of the UCL Institute of Digital Health. With colleagues, she is organising an ATI workshop on "Opportunities and challenges for data-intensive healthcare". She serves on the Executive Committee for Farr London.

She is an expert on the design and use of interactive technology in healthcare, and on how people make sense of information. She has been Principal Investigator on grants investigating the design and use of interactive systems in healthcare from EPSRC, ESRC, MRC, NIHR, and the Royal Society.

Professor Chris Taylor, Associate Vice President for Research, The University of Manchester

Chris Taylor FREng, OBE, of the University of Manchester has been at the forefront of computer vision research for over 35 years, with some of the most highly cited publications in the field and a strong record in technology transfer. He founded one of the world's leading multidisciplinary research centres in computer vision and medical image analysis. Chris is a Distinguished Fellow of the British Machine Vision Association, International Association for Pattern Recognition and Medical Image Computing and Computer-Aided Intervention Society. He was elected a Fellow of the Royal Academy of Engineering in 2006.

Chris is currently Associate Vice President Research for the University and is the Director of Manchester Informatics (Mi) the University's strategic response to the opportunities and challenges of the digital revolution.

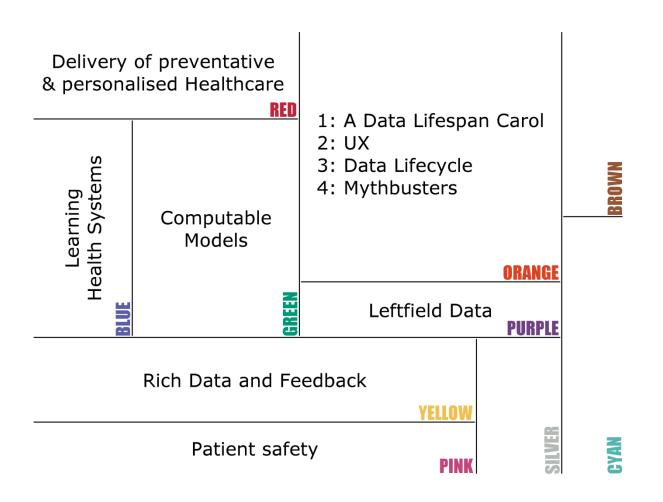
Professor lain Buchan, Director,

The Farr Institute for Health Informatics Research

lain Buchan is a Professor in Public Health Informatics and leads the Centre for Health Informatics at the University of Manchester. Nationally, he is Director of the MRC Health eResearch Centre of the UK's Farr Institute for Health Informatics Research. He has over twenty years' experience in Health Informatics, with backgrounds in Clinical Medicine, Pharmacology, Biostatistics and Public Health. His research is focused on harnessing large-scale linked health data to build usefully complex models of health and care.

He leads a multi-disciplinary research team that is deep in statistical and software engineering methodology. He writes software (e.g. www.statsdirect.com) as well as working at higher levels of abstraction and leadership in advancing reproducible, larger scale health science. He is a Fellow of the American College of Medical Informatics, the top honour in the field.

In association with:



🔰 @Man_Inf @EPSRC @herc_farr #UKHDAN

(Wordle Generated from ideas submitted by attendees for the Healthcare question)

Healthcare Opportunities Overview Tree Map

UK Health Data Analytics Workshop: Well Sorted Materials

6th January 2016

Contents

Introduction	1
Dendrogram	2
Тгее Мар	3
Heat Map	4
Raw Group Data	5

For an online, interactive version of the visualisations in this document, go here:

www.well-sorted.org/output/UKHDANHealthcareOpportunities

Dear participant,

Thank you for taking part in submitting and sorting your ideas.

This document contains several visualisations of your ideas, grouped by the average of your online sorts. They are:

Dendrogram - This tree shows each submitted idea and its similarity to the others. The lower two ideas 'join' the more people grouped those two ideas together. For example, if two ideas join at the bottom, every person grouped those two together.

Tree Map - This visualisation presents an 'average' grouping. It is calculated by 'cutting' the Dendrogram at the dashed line so that any items which join lower than that line are placed in the same group. In addition, rectangles which share a side of the same length are more similar to each other than their peers.

Heat Map - This visualisation shows a similarity matrix where each idea is given a colour at the intersection with another idea, showing how similar the two are. This is useful to see how well formed a group is. The more red there is in a group (shown by the black lines), the more similar the ideas inside it were judged to be.

Raw Group Data - This table shows every submitted idea and its longer description. They are shown in the same order as the Dendrogram (so similar ideas are close to each other) and split into the coloured groups used in the Tree Map. In addition, each idea has been given a unique number so they are easier to find.

References

[1] Methven, T. S., Padilla, S., Corne, D. W., & Chantler, M. J. (2014, February). Research Strategy Generation: Avoiding Academic 'Animal Farm'. In Proceedings of the companion publication of the 17th ACM conference on Computer supported cooperative work & social computing (pp. 25-28). ACM. doi>10.1145/2556420.2556785

UK Health Data Analytics Workshop - Materials Generated by Well-Sorted.Org

Dendrogram

1: Appropriate analyses	
2: Platform to host standalone and integrated tools	
3: Preventative and personalized health interventions —	
4: Relating the individual to the population —	
5: Understand detailed patient-level data in context —	
6: Personalised Medicine —	
7: Learning healthcare system	
8: Rapid feedback learning health system	
9: Better evidence-based decision-making —	
10: Closing the gap between evidence and action —	
11: Automated interventions —	
12: Personalised Healthcare —	
13: Reporting on current medication use	
14: Event sequence/process mining via language models	
15: Predictive Inference	
16: Predictive models in Learning Healthcare Systems —	
17: Integrating data sources —	
18: Development of Diseases Risk Prediction Algorithms	
19: Stratified Medicine based on Clinical Image Data	
20: Data integration/wranging	
21: System data —	
22: Collect health information from the point of care	
23: Generating hypotheses from databases	
24: make health service use data widely available	
25: Combining Data Repositories	
26: Text/Data Analytics for Clinical Decision Support	
27: Discovery of composite biomarkers —	
28: Monitoring compliance with best practice —	
29: Variety —	
30: Data Science for Mental Health —	
31: UX	
32: Anonymisation and Record Linkage —	
33: Enhancing predictive healthcare —	
34: Use of GP patients records to improve healthcare	
35: events to data to information & knowledge	
36: GDS-inspired, Digital-by-Default IT Transformation —	
37: Opportunistic detection of disease from images	
38: Geospatial data mashups of heterogeneous sources —	
39: Weather & Pollution Data/Forecasts in Health Care	
40: Use of genetic information —	
41: Critical realism —	
42: Smartphone apps to improve outcome assessment	
43: Deep tissue imaging	
44: Analysis of Use On-line Behaviour	
45: Monitoring can improve management of relapse	
46: Continuous monitoring of COPD patients	
47: Second diseases in persons with chronic conditions	
48: Assist gait rehab of neurological conditions	
49: Exercise and glycemic control in type 1 diabetes	
50: Theory of overfitting in survival analysis —	
51: Combating Healthcare Associated Infections (HCAIs) —	
52: Patient safety improvement —	
53: Patient safety	
54: Understanding patient journey's through the NHS	
55: Drug Adverse Events Detection using Data Mining —	
56: Bristol Population Laboratory (BPL)	
57: Supporting managed self-care in chronic conditions —	
58: Biomedical data integration —	
59: structured info common to health and social care	
60: Learning from data	
61: Strategic analysis of research projects	
62: robust holistic assessment of healthcare system	

	data integration				55: Drug Adverse Events Detection using Data Mining	54: Understanding patient journey's	53: Patient safety	52: Patient safety improvement
	care in chronic conditions 58: Biomedical	ELLOW				Associated Infections (HCAls)	analysis	glycemic control in type 1 diabetes
	57: Supporting	conditions	chronic co conditions	COL	relapse	51: Combating Healthcare	50: Theory of overfitting in	assessment 49: Exercise and
	56: Bristol Population _aboratory (BPL)		47: Second 48: , diseases in r persons with neu	46: Continuous 47: monitoring of dis COPD patients pers	45: Monitoring 46: (can improve mol management of COF	44: Analysis of Use On-line Behaviour	43: Deep tissue imaging	42: Smartphone apps to improve outcome
	PURPLE	information	Data/Forecasts in Health Care	heterogeneous sources	<u>GRE</u>		<u>BLUE</u>	nealuicare
healthcare system	41: Critical realism	40: Use of genetic	39: Weather & Pollution	38: Geospatial data mashups of	N			12: Personalised
holistic assessment of	UKANGE				ing	Integr		11: Automated interventions
CO. rohue					20: Data	2		action
research					Algorithms	21: System data Alg	21: Sy	gap between evidence and
analysis of					Prediction	Image Data Pr	Ima	10: Closing the
61. Stratenic					18: Development	_	on	decision-making
						(19: Stratified	Medic	evidence-based
					Healthcare Svstems		uale	9: Better
				healthcare	Learning	u	17: II	system
		Default IT Transformation		to improve	models in			Teedback learning health
		Digital-by-		34: Use of GP		/e	15: F	8: Rapid
	images	inspired,		Incardi	Infiniting via			system
		30.000	knowledge		sequence/process		madi	nealthcare
	Opportunistic	Linkage	data to information &	30: Data Science	14: Event	g on	13: Re	7: Learning
	37:	Anonymisation and Record	35: events to	Decision Support			_	
	healthcare	32:	31: UX	Clinical				
from data	33	best practice	biomarkers	26: Text/Data			Medicine	data in context
60: Learning	23. vallety	compliance with	composite	cale			6: Personalised	patient-level
social care		Do. Monitoring	27: Discoverv of	the point of		interventions	tools	5: Understand
health and	Rep	widely available	databases	information from	the population	health	and integrated	
info common to	Data	24: make health	23: Generating	22: Collect health	4: Relating the individual to	3: Preventative	2: Platform to host standalone	1: Appropriate analyses

Heat Map

m to host standa

s in Lea of Di

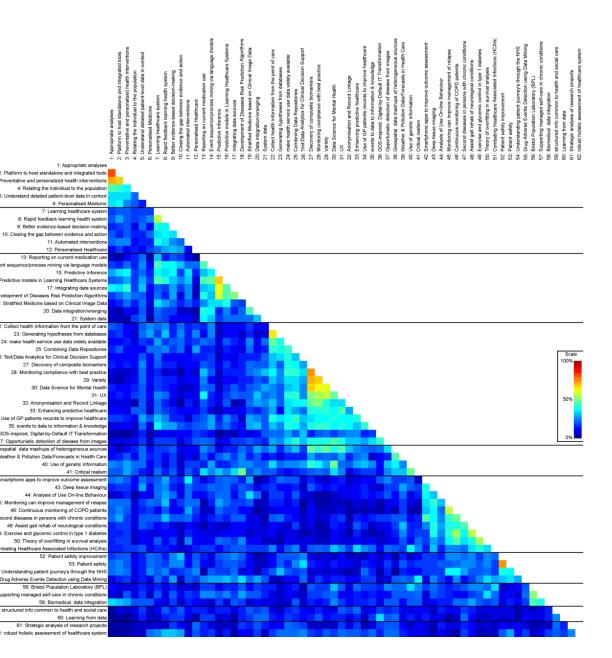
33: E

and pe 4. R

nd de

14: E 16:

24: 1


42: Sm

46· C

55: Drug Adv

62: robust holistic as

56: Bri

UK Health Data Analytics Workshop - Materials Generated by Well-Sorted.Org

Raw Group Data

Colour	#	Title	Description
Red	1	Appropriate analyses	There will always be missing or incomplete data within healthcare records. Being able to apply the "best" analytical techniques to highlight the clinically relevant data would be of great benefit to the public and HCPs using/contributing data.
	2	Platform to host standalone and integrated tools	Provide an open reference platform having containers for versioned software with dependencies, easing the on ramp for less technical researchers to discover, reuse, integrate and repurpose open source tools for health research.
	3	Preventative and personalized health interventions	Large amounts of data are routinely captured for patients from interaction with health service that can be used by clinicians and medical professionals to drive preventative, personalised health interventions.
	4	Relating the individual to the population	When self-managing, people want to find "people like me". How to identify the key "fingerprints" in data for individual and population to facilitate clustering of people with similar conditions and experiences?
	5	Understand detailed patient- level data in context	Health questions often involve the analysis of large quantities of data that are of unknown quality. Visualization allows people to assess fine-grained, high-dimensional data in the context of underlying patterns.
	6	Personalised Medicine	The volume of genetic data available has vastly increased without a proportionate level of impact from the health research community. This is an opportunity to to build on huge amounts of data if we can establish the necessary research infrastructure.

Colour	#	Title	Description
Blue	7	Learning healthcare system	To distil relevant information from routinely collected data, feed that back to patients / clinicians and to test whether that makes a difference.
	8	Rapid feedback learning health system	Data is available to provide rapid feedback on many aspects of health care quality, safety and effectiveness, but we lack effective frameworks to ensure analysis, use and implementation of findings
	9	Better evidence-based decision- making	Access to well presented historical data / analysis will help health practicioners to make better informed decisions by exploring data from cohorts that are more widely sampled but also more specific to the diagnosis.
	10	Closing the gap between evidence and action	There is a cycle of data production to knowledge generation to action. How can we make sure the knowledge is produce in a timely fashion from the data and the knowledge delivered to the actor(s) who can take action?
	11	Automated interventions	Using sensing and real-time data analytics to detect when to trigger a treatment. e.g. to release a drug, not on a fixed timetable, but when the body is detected to be most receptive to it.
	12	Personalised Healthcare	Our digital presence, though inconsistent and varied, provides opportunities for traditional approaches to be improved and complemented towards a personalised, interactive and proactive approach.

Colour	#	Title	Description
Green	13	Reporting on current medication use	Creation of prescribing datasets provides a unique opportunity to report to clinicians and individuals on their current medication use. This would allow for more accurate reconciliation but could also provide a number of value added views of the data.
	14	Event sequence/process mining via language models	Standard data mining classifies and clusters unordered sets of data. health data has ordered sequences of events, more suited to language models from linguistics, e.g. n-gram taggers, Brill taggers and Chart parsers for tagging Part-of-Speech sequences.
	15	Predictive Inference	Most healthcare technologies are not predictive, and merely identify deterioration as it occurs; there is an opportunity to exploit fully-predictive systems for improving patient outcomes.
	16	Predictive models in Learning Healthcare Systems	Develop predictive models that respond to continuous feedback - i.e. coefficients that dynamically update based on secular trends, changing outcome distributions, changing coding practices.
	17	Integrating data sources	The use of multiple data sources and types to better model and understand health care problems and issues. I.e. using all available data regarding a patient to better diagnose and understand underlying conditions.
	18	Development of Diseases Risk Prediction Algorithms	Validated, applicable to clinical practice, predictive algorithms to calculate the risk of individuals for a specific disease to decide on lifestyle modifications and preventive medical treatments
	19	Stratified Medicine based on Clinical Image Data	Providing an integrated infrastructure across PACS and Life Sciences Image and related data sets offers novel tissue and organ-centric data analytics opportunities for clinical and translational sciences, including in stratified medicine.
	20	Data integration/wranging	Bringing together (disparate, large, multi-modal, sensitive) data sources is estimated to take 80% of the "analysis" process. It is critical to achieve effective heath data analytics to address this upstream activity to enable value-added analytics.
	21	System data	Errors in medical device use and EHR use cause harm, but we are not yet collecting use data, nor are logs accurate. We should use data to help design safer systems, and could mine it with patient outcomes. Currently we have no idea which things are safer.

Colour	#	Title	Description
Orange	22	Collect health information from the point of care	Using pre-existing transactional opportunities. One of the biggest challenges to front line clinicians as the population ages and hospital care becomes more expensive is seeing multi disciplinary,multi organizational care information at presentation.
	23	Generating hypotheses from databases	We need better statistical methods (possibly combined with expert systems) for examining large databases for e.g. genetics and disease. This should mean reducing false positives and allowing formation of, rather than just testing, hypotheses.
	24	make health service use data widely available	administrative records of patients' use of services and prescriptions should be firstly, recorded more accurately, and secondly, made widely available to researchers in order to assess what specific groups within the population may have unmet needs
	25	Combining Data Repositories	There are many growing data repositories associated with experiment/modelling. There is value in combining these with data derived from patient records etc. Centralising these in a regional data centre opens great opportunity for further analysis. Discuss
	26	Text/Data Analytics for Clinical Decision Support	Current text analytics technologies can provide the necessary tools to extract information from unstructured text sources. Such an approach can exploit exemplar cases to help the provision of the right intervention to the right patient at the right time.
	27	Discovery of composite biomarkers	Risk assessment (precursors, biomarkers) for high- prevalence disease based on data analysis with measures from genotype and phenotype info. What groups of 'measures' associate best with outcome (disease)?
	28	Monitoring compliance with best practice	Variance in service delivery has positive and negative clinical and cost implications. EHR data presents an opportunity to identify correlations between service delivery patterns and outcomes to monitor compliance with established best practice.
	29	Variety	Exploiting, joining, and synthesizing a large variety of medical, healthcare and many other types of social data which are originally disconnected. This has provided a great chance of discovery!
	30	Data Science for Mental Health	How to use wearable devices, ubiquitous sensing, data analytics to track markers of mental health issues and provide real-time recommendations to people with mental health problems as which coping strategies to use
	31	UX	Moving well-understood techniques in UX/HCI into the healthcare domain. Especially around data presentation, interaction, and user modelling.
	32	Anonymisation and Record Linkage	The release of health records is dependent on how well we can anonymise the data for research

		purposes. For this, we need state-of-the-art statistical disclosure control techniques. Record linkage and statistical matching can fuse sources of data.
33	Enhancing predictive healthcare	Integration of multi-omic data along with the extensive patient phenotype data available facilitates predictive modelling of healthcare outcomes. This approach is also central for personalised prediction.
34	Use of GP patients records to improve healthcare	Longitudinal data is available from patients visiting their GPs. Data mining methods can be used to extract useful information and to potentially identify new drug adverse reactions/symptoms.
35	events to data to information & knowledge	the technical infrastructure 4 the appropriate distribution of information in the healthcare sector is improving, a lot of the information is still in paper format & not shared; organisational processes to convert events into data, information need help
36	GDS-inspired, Digital-by-Default IT Transformation	Commercial systems have largely failed to engage with the needs of the end user in health care. Poor IT design has huge costs in primary, 2ndary & social care. GDS-led agile devt. would transform health sector efficiency & transform clinician-engagement.
37	Opportunistic detection of disease from images	All clinical images are recorded in hospital databases. Though taken to help diagnose a particular disease, they may show signs of other (unsuspected) disease. Automatic analysis algorithms could scan all images and warn if they detect relevant signs.

Colour	#	Title	Description
Purple	38	Geospatial data mashups of heterogeneous sources	Data science by mining associations and relations in multiple variables related to a domain can help in discovering important facts that healthcare needs to work better. Visualising these geographically give rise to better analytics and decisions.
	39	Weather & Pollution Data/Forecasts in Health Care	Weather influences human health (e.g. the risk of heat exhaustion, falls on ice, respiratory illness during high pollution episodes, weather influences on arthritis). New data and forecasts being collected can help diagnoses and hospital staff management.
	40	Use of genetic information	Genetic data can be used to aid in diagnosis and refined care pathways.
	41	Critical realism	Critical realism offers exciting prospects in shifting attention toward the real problems that we face and their underlying causes, and away from a focus on data and methods of analysis. As such, it offers a robust framework for the use of a variety of me

Colour	#	Title	Description
Yellow	42	Smartphone apps to improve outcome assessment	Smartphones offer opportunities to collect data directly from patients regarding the symptoms of their disease, and the benefits and harms of treatment, with the potential to improve how the information is used during routine clinic visit.
	43	Deep tissue imaging	We are now in a position to map out tissues using advanced image analysis and machine learning methods. This provides the opportunity to link genomic and proteomic data with the tissue hence putting it into the spatial context of the tissue.
	44	Analysis of Use On-line Behaviour	Log and analyse user on line behaviour to detect early signs of mental health problems, dementia and other pathologies. Data mining of keystrokes, gesture, and mouse input combined with text from email and Internet activity
	45	Monitoring can improve management of relapse	Real time symptom monitoring has the potential to pick up on early warning signs of relapsing mental health problem such as psychosis and therefore result in earlier and more effective and efficient treatment management.
	46	Continuous monitoring of COPD patients	COPD is common, increasing, and not well treated. Ideally treatment should reflect infections- exacerbations and recovery; patient activity levels; and environmental variation. How do we track 24/7 cough and activity to personalise therapy?
	47	Second diseases in persons with chronic conditions	Persons with chronic conditions (e.g. diabetes) are at increased risk of second (often fatal) diseases (e.g. cancer). There is a need to better predict these taking account of age, disease severity, duration and treatment, to develop optimal surveillance.
	48	Assist gait rehab of neurological conditions	People suffering from neurological conditions often experience symptoms affecting their gait. Using wearables to monitor gait and provide assistance when needed in home-based or outdoor settings may help to reduce visits to the clinic and overall cost.
	49	Exercise and glycemic control in type 1 diabetes	The effect of exercise on glycemic control for type 1 diabetics is complex, is specific to the exercise undertaken and is specific to the individual. Data science has the potential to quantify correlations and improve patient quality of life.
	50	Theory of overfitting in survival analysis	Overfitting (many variables, too few samples) is an increasing problem in medical outcome prediction. There is no method yet for predicting required sample sizes for the main statistical method used in the analysis of time-to-event data, Cox regression.
	51	Combating Healthcare Associated Infections (HCAIs)	Recent years have seen rapidly evolving, next- generation whole-genome-sequence (WGS) technologies becoming widely available. There is an exciting opportunity for developing new principled methods to jointly analyse WGS and epidemiological

data.

Colour	#	Title	Description
Pink	52	Patient safety improvement	Risk in healthcare is dynamic and needs to be assessed continuously as knowledge about patient conditions, treatments and environment increases. Data science would provide proactive/structured means for evolving our understanding of patient safety risks.
	53	Patient safety	Primary health care data has the potential to be used to provide more information on adverse events and long-term health complications for specific treatments.
	54	Understanding patient journey's through the NHS	At present in the NHS in England trying to understand the interaction with the full range of NHS services is difficult as not all services have the capacity to share data and different coding systems are used by different NHS contributors.
	55	Drug Adverse Events Detection using Data Mining	Some drugs can cause serious adverse events on patients. Discovering new adverse events of drugs is important for pharmaceutical companies. Data mining algorithms have been applied to discovering new adverse events of drugs from electronic health records.

Colour	#	Title	Description
Silver	56	Bristol Population Laboratory (BPL)	A range of data is relevant to understanding causes of health problems and to evaluate health interventions. BPL will enable different scales of data (at population macro level, individual level and molecular level) to be linked and worked across together
	57	Supporting managed self-care in chronic conditions	Using data from a range of sources, including home and wearable sensors, to provide personalised advice and feedback, and detect deterioration early enough to avoid unplanned hospital admission and long-term decline.
	58	Biomedical data integration	A big progress has been made in utilizing the genetics or imaging clinical data (histology, MRI) to support diagnostic. On the other hand the integration of multiple source of the information still remains a challenge.

Colour	#	Title	Description
Brown	59	structured info common to health and social care	An agreed representation for the information commonly shared between health and social care, for use in research and direct patient care where appropriate. This would simplify the asking of research questions and the effective use of research results
	60	Learning from data	Using appropriate tools to support evidence-based medicine

Colour	#	Title	Description
Cyan	61	Strategic analysis of research projects	Billions of dollars are spent by research directorates across the globe on healthcare. Yet there is no single uniform view that provides decision makers with an overview of this research or how, for instance, RCUK and NSF spend and trends compare.
	62	robust holistic assessment of healthcare system	some major issues in healthcare are knowledge sharing, establishment of multi-agency, provision of multidisciplinary services and early diagnosis by evidence-based assessment tools. A robust holistic analysis of healthcare data helps to improve them.

Learning Health Syste	ems	BLUE
Healthcare Opportunity #1:		
 An opportunity to make a paradigm shift Systems 	from Evidence Based Med	icine to Learning Health
Healthcare Opportunity #2:		
Redefining organisational/professional/ci	vic/ relationships to a mor	e data-centric culture
Healthcare Opportunity #3:		
High resolution longitudinal data		
If you wish, draw a diagram which represents you	r Group Members:	
group's area, below:	Neils Peek Ruth Norris John Ainsworth George Moulton Alex Casson Tjeerd Van Staa Ed Conely	Allan Tucker Pete Bower Samhar Mahmoud David Prieto-Merino Amitava Banerjee Catherine Castillo

A Data Lifespan Car	ol	ORANGE A
Healthcare Opportunity #1: Ghost of data past		
 Data reuse/repurpose Confidence/trust in meta-data Data decay/obsolescence Missing data 		
Healthcare Opportunity #2: Ghost of data presen	t	
HarmonisationAvailability		
Healthcare Opportunity #3: Ghost of data future		
 Standardisation – centrally pushed good Broad consent 	standards/SOPs etc.	
If you wish, draw a diagram which represents your group's area, below:	Group Members: Olly Butters Becca Wilson Michael Stone	Emanuele Trucco Jo Knight Andrew Dowsey

UX		ORANGE B
Healthcare Opportunity #1: Collecting, integrating	; & availability	
 Across databases, from point of care Anonymise for linkage and research => pu <u>Security</u>; access; how to improve – scale Ideas: 22, 24, 25, 29, 32, 34* 	blication	
Healthcare Opportunity #2: Using and understand	ling data	
 Enabling clinical decisions Analytics Knowledge discovery from databases "Right tool for the right job" Ideas: 23, 26, 27, 35, 36 		
Healthcare Opportunity #3: Cross-talk/end-UX		
 Taking <u>collection and integration</u> and <u>und</u> Stakeholders + end-user benefit experient Ideas: 28, 30, 31, 33, 37 		imise output
If you wish, draw a diagram which represents your group's area, below:	Group Members: Stephen Swift Kayleigh Mason Grant Thiltgen Alison Noble	Sandra Bucci Maarten De Vos George Demetriou

Data Lifecycle		ORANGE C			
Healthcare Opportunity #1: Collecting, integratin	g & availability				
Data aggregation					
Hypothesis generation					
 Methodological developments 					
Healthcare Opportunity #2: Using and understan	ding data				
Data analysis methods and models					
 Methodological developments 					
 Anomaly detection 					
Decision support					
Healthcare Opportunity #3: Cross-talk/end-UX					
Integrating knowledge into practice					
 Improved user experience 					
 Improved decision support to patients ar 	nd healthcare professionals				
If you wish, draw a diagram which represents	Group Members:				
your group's area, below:	Chris Smith	Para Vezyridis			
	Natalie Shlomo	Adele Marshall			
	Tarani Chandola	Dai Evans			
	Duncan Appelbe				

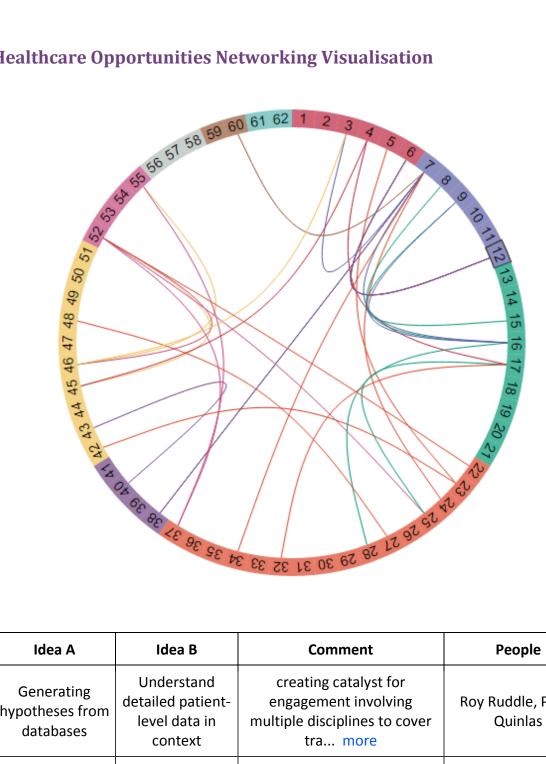
Data aggregation Integrating knowledge	Data analysis methods and modules		
	Mythbusters		ORANGE D
Healthcare Opportunity #1	: Feedback on Data		
Improve quality of data col Incentives to do it E.g. proportion of	right/contribute	ack essure measures (relative	to others)
Healthcare Opportunity #2	: Participatory design c	of the analytical workflow	
 Improve quality of 	results/conclusions an		
Healthcare Opportunity #3	: Better understanding	/diagnosis using multi-mo	odal data
 Bring together diff Different views on Avoid inappropriat Stratification 	data		
If you wish, draw a diagran your group's area, below: Good Data ©	n which represents Bad Data 🛞	Group Members: Tim Cootes Caroline Jay Roy Ruddle Edwin Beggs	Carole Goble Krysztof Poterlowicz Mike Pearson
Good Analysis	Bad Analysis		

De	livery o	of prev	entativ	ve & p	ersona	alised Healthcare	RED
Healthc	are Oppo	rtunity #	1:				
•	 Development of personalised medicine through engagement involvement & inter- disciplinary collaborations 						
Healthc	are Oppo	rtunity #	2:				
•	Developr	nent of a	analytica	l tools a	and guid	ance to facilitate #1	
Healthc	are Oppo	rtunity #	3:				
•	Developr	nent of r	esearch	infrast	ructures	to share and manage #1 a	nd #2
	rish, draw oup's area <u>2</u>	•		n repres	ents 6	Group Members: Lydia Drumright Alistair Sutcliffe Philip Quinlan Daniele Soria Jane Sarginson	Samantha Crossfield Ian Craddock Simon Harper Daniel Neagu

Rich Data and Feedba	ack	YELLOW
Healthcare Opportunity #1:		
 Richer better time-resolved data would enable: Improved prediction and early intervention Preventing relapse Detecting need for therapy change 	 Targeted furthe Dynamic managerint 	er investigations gement of care
Healthcare Opportunity #2:		
Involving the individualPersonalised feedbackInfluencing lifestyle	-	individual needs ease inequality
Healthcare Opportunity #3:		
 Better decision making Objective rich real life data Joint decision-making 	 Opportunity fo models Contexualisation	r better analysis of m
If you wish, draw a diagram which represents your group's area, below:	Group Members: Jens Rittscher Chris Taylor Anthony Coolen Paula Williamson	Theodore Kypraios Thomas Ploetz Theodoros Georgiou Sacha Manson-Smith

Computable Mode	els	GREEN
Healthcare Opportunity #1: Predictive Analytics		1
Integration of text mining and time serie	2S	
Healthcare Opportunity #2: Natural Language Pr	ocessing	
User issues		
Clinician trainingHuman & machine learning	End user analyClinician buy-i	•
Healthcare Opportunity #3: Data Integration		
 What data sources are needed? Where's the complexity? Practice deployment under uncertainty 		
If you wish, draw a diagram which represents your group's area, below:	Group Members: Owen Johnson John Keane Robert Stevens Colin McCowan Andrew Renehan Alistair Willis Behzad Bordbar	David Rew Arief Gusnanto Albert Burger David Clifton Emily Petherick Jim Weatherall Charlie McCay

Patient safety		PINK
Healthcare Opportunity #1:		
 Real-time monitoring and responses E.g. Intensive Care Unit Adverse drug reactions Patient pathway 		
Healthcare Opportunity #2:		
 Learning from failures of safety critical systems & Proof of correctness of patient pathway Healthcare Opportunity #3: 	k learning new analysis/lea	rning systems
Population-level learning for safety = 8-12%		
If you wish, draw a diagram which represents your group's area, below: Population level safety & learning Patient safety	Group Members: Ibrahim Habli David Tian David Hogg Ann Blanford	


Leftfield Data	PURPLE	
Healthcare Opportunity #1:	· · · · · · · · · · · · · · · · · · ·	
 Geodata – location. Health in the community. Need to understand what is going on in the community Twitter location data Ambulance service data Pollution Weather 	 Smartphone/wearable tech Environment/people Part of forecasting process 	
Healthcare Opportunity #2:		
Genome dataDiagnosis	Larger scale than everAbility to link biology/medicine	
TreatmentEngine of precision medicine	Variant have clinical significanceTools used – variant has consequences	
Healthcare Opportunity #3:		
Combining Genotype and Phenotype data Real data/real problems How we capture phenotype correctly		
If you wish, draw a diagram which represents your group's area, below:	Group Members: Andy Brass Yi Wang Kieran O'Malley	

Healthcare Opportunities Elevator Pitch Video Playlist

Well-Sorted.org Videos Playlists Channels About	
UK Health Data Analytics Workshop Needboor Capanumes of history and WI Health Data Analytics Workshop (Healthcare Opportunities) Well-Sorted.org 10 videos 146 views 10 Updated 5 days ago Well-Sorted.org 10 videos 146 views 10 Updated 5 days ago This are all the elevator pitchs recorded at the UK Health Data Analytics Network Inaugural Workshop on the 6th January 2016. These are from the first day, where the meeting discussed Healthcare Opportunities. Before the meeting we aske more Playall Share	
1 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Blue Elevator Pitch by Well-Sorted.org	1:16
2 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Orange 1 Elevator Pitch by Well-Sorted.org	1:34
3 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Orange 2 Elevator Pitch by Well-Sorted.org	0:53
4 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Orange 3 Elevator Pitch by Well-Sorted.org	1:02
5 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Orange 4 Elevator Pitch by Well-Sorted.org	0:59
6 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Red Elevator Pitch by Well-Sorted.org	0:58
7 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Yellow Elevator Pitch by Well-Sorted.org	1:39
8 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Green Elevator Pitch by Well-Sorted.org	1:37
9 UK Health Data Analytics Workshop (Healthcare Oppotunities) - Pink Elevator Pitch by Well-Sorted.org	1:23
Image: Construction of the second s	1:43

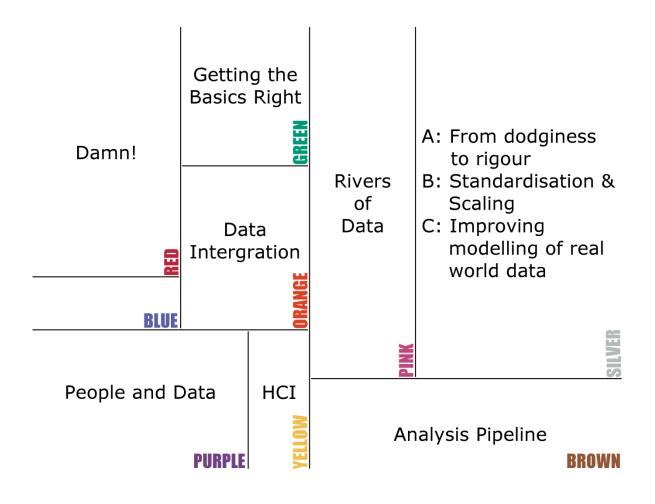
https://www.youtube.com/playlist?list=PLB-YaUclLgfPK2sceyM5StFmr6rwltf7T

Healthcare Opportunities Networking Visualisation

Idea A	Idea B	Comment	People
Generating hypotheses from databases	Understand detailed patient- level data in context	creating catalyst for engagement involving multiple disciplines to cover tra more	Roy Ruddle, Philip Quinlas
Continuous monitoring of COPD patients	Drug Adverse Events Detection using Data Mining	Population-level leading to identifying key indicators of risk	Chris Taylor, Pink (3)
Learning healthcare system	Geospatial data mashups of heterogeneous sources	Use data in different. Embrace the learning health system	Kieran, Niels

	1	1		
Generating hypotheses from databases	Smartphone apps to improve outcome assessment	Tools to make aspects of database to become dynamic. If intervention change more	Michael Stone, N/A	
Personalised Medicine	Personalised Healthcare	infrastructure to enable personalised healthcare	Niels Peek, Simon Harper	
Monitoring can improve management of relapse	Patient safety improvement	Continuous, real-time monitoring of critical health parametric and conditi more	Thomas, Ibrahim	
Predictive models in Learning Healthcare Systems	Monitoring compliance with best practice	Predictive Analytics to provide feedback to clinicians to create learning c more	Owen J, Dan e Evans	
Patient safety improvement	Combining Data Repositories	Standardisation of datasets, methodologies, hardware designs to aid in safe more	David Hogg, Emanelle Trucco	
Geospatial data mashups of heterogeneous sources	Learning healthcare system	Geotagging integrated with health data -> learning heath systems	Allan Tucker, Kieran O'Malley	
Integrating data sources	Combining Data Repositories	Data integration to facilitate statistical modelling and epidemiological stu more	Adele Marshall, Emily Petherick	
Relating the individual to the population	Integrating data sources	Issue of accessible in safe and trustful way, effciently, data from clinica more	Daniel, N/A	
Use of genetic information	Deep tissue imaging	Refined gene panels for histological analysis	Andy, Jens	
Personalised Medicine	Personalised Healthcare	Breaking down communications barriers and having different scientists, heal more	Lydia, Peter B	
Learning healthcare system	Preventative and personalized health interventions	Leaning health system - Continuously using routine data to improve health s more	Ami, Sam	

	1			
Discovery of composite biomarkers	Assist gait rehab of neurological conditions	The speaker (for Yellow) talked of integrating data of different types, e.g more	Emanuele, Yellow group speaker	
Patient safety improvement	Continuous monitoring of COPD patients	Continuous monitoring of patients can lead to earlier interventions and imp more	Sacha Manson- Smith, Ibrahim Mabli	
Anonymisation and Record Linkage	Integrating data sources	Data linkage and wrongly and collection (Connection from 22,24,25,32,34,35 more	Dai, Owen	
Drug Adverse Events Detection using Data Mining	Opportunistic detection of disease from images	Use EHR to improve patient safety (Connection from 52 + 55 TO 22 + 37	David Tian, Steve Swift	
Predictive Inference	Better evidence- based decision- making	Improving outcome prediction is an important input in evidence-based decisi more	David, Colin	
Relating the individual to the population	Monitoring can improve management of relapse	Individuals - not just patients but clinicians as recipients of feedback (C more	Carole Goble,	
Patient safety improvement	Opportunistic detection of disease from images	Strong link between pink and orange no2 (Connection from 52 + 55 TO 22 + 37 more	Steve Swift, David Tan	
Learning from data	Learning healthcare system	Learning from data is a key component to LHS	Ruth/George, Brown	
Use of GP patients records to improve healthcare	Learning healthcare system	Information from GP practices can input into a learning health system	Ruth,	
make health service use data widely available	Learning healthcare system	From accurately / easy to use real time real world data gathering and analy more	Alison Noble, Catherine Castillo	
Predictive models in Learning Healthcare	Rapid feedback learning health system	Create new ways of using continuous data feeds to create predictive real- ti more	David/Ruth/George, Colin	


Systems			
Continuous monitoring of COPD patients	Preventative and personalized health interventions	Connecting primary care data with continuous experimental data by improving more	lan, Jane
Collect health information from the point of care	Patient safety improvement	Collecting healthcare data @ poc	n/a, n/a
Learning healthcare system	Predictive models in Learning Healthcare Systems	Socio-technical aspects of learning and outcome improvement	E S Cowley, Charlie McCoy
Better evidence- based decision- making	Predictive models in Learning Healthcare Systems	Dealing with output of statistical analysis (Connection from Purple group T more	Yi, Arief
Personalised Healthcare	Personalised Medicine	Infrastructure to enable Personalised health care and Personalised medicine	Simon Harper, Niels Peek

7th – Research Challenges

(Wordle Generated from ideas submitted by attendees for the Healthcare question)

Research Challenges Overview Tree Map

UK Health Data Analytics Workshop: Well Sorted Materials

7th January 2016

Contents

Introduction	1
Dendrogram	2
Тгее Мар	3
Heat Map	4
Raw Group Data	5

For an online, interactive version of the visualisations in this document, go here:

www.well-sorted.org/output/UKHDANTechnologyChallenges

Introduction

Dear participant,

Thank you for taking part in submitting and sorting your ideas.

This document contains several visualisations of your ideas, grouped by the average of your online sorts. They are:

Dendrogram - This tree shows each submitted idea and its similarity to the others. The lower two ideas 'join' the more people grouped those two ideas together. For example, if two ideas join at the bottom, every person grouped those two together.

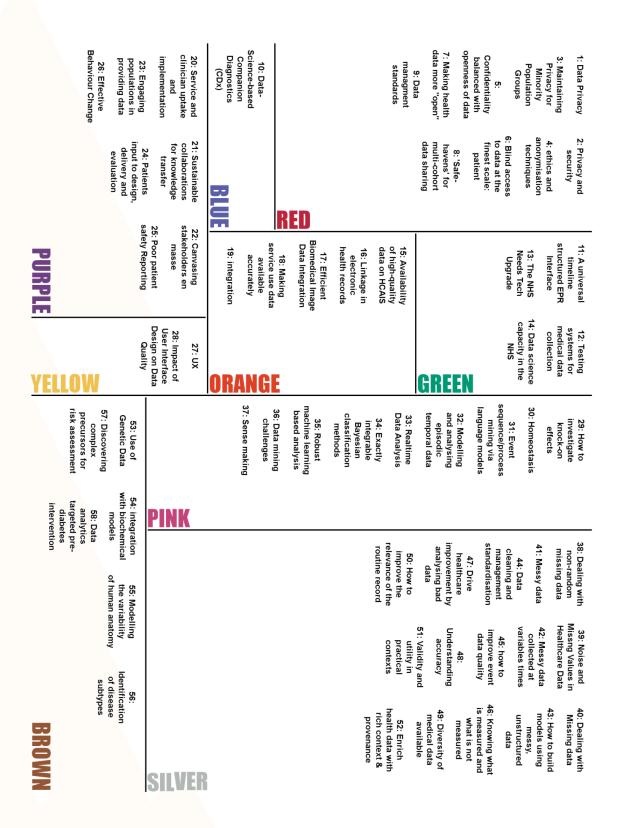
Tree Map - This visualisation presents an 'average' grouping. It is calculated by 'cutting' the Dendrogram at the dashed line so that any items which join lower than that line are placed in the same group. In addition, rectangles which share a side of the same length are more similar to each other than their peers.

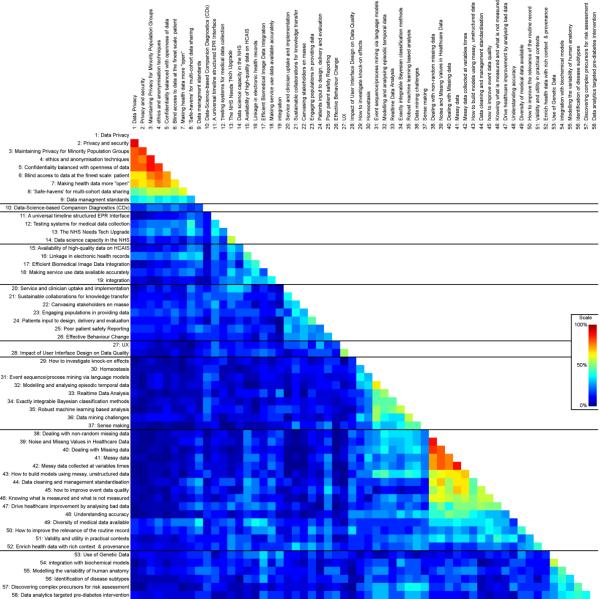
Heat Map - This visualisation shows a similarity matrix where each idea is given a colour at the intersection with another idea, showing how similar the two are. This is useful to see how well formed a group is. The more red there is in a group (shown by the black lines), the more similar the ideas inside it were judged to be.

Raw Group Data - This table shows every submitted idea and its longer description. They are shown in the same order as the Dendrogram (so similar ideas are close to each other) and split into the coloured groups used in the Tree Map. In addition, each idea has been given a unique number so they are easier to find.

References

[1] Methven, T. S., Padilla, S., Corne, D. W., & Chantler, M. J. (2014, February). Research Strategy Generation: Avoiding Academic 'Animal Farm'. In Proceedings of the companion publication of the 17th ACM conference on Computer supported cooperative work & social computing (pp. 25-28). ACM. doi>10.1145/2556420.2556785




UK Health Data Analytics Workshop - Materials Generated by Well-Sorted.Org

Dendrogram

1. Data Drivery	
1: Data Privacy ———	
2: Privacy and security ——— 3: Maintaining Privacy for Minority Population Groups ———	
4: ethics and anonymisation techniques	
5: Confidentiality balanced with openness of data	
6: Blind access to data at the finest scale: patient	
7: Making health data more "open"	
8: 'Safe-havens' for multi-cohort data sharing	
9: Data managment standards —	
10: Data-Science-based Companion Diagnostics (CDx)	
11: A universal timeline structured EPR Interface	
12: Testing systems for medical data collection	
13: The NHS Needs Tech Upgrade	
14: Data science capacity in the NHS	
15: Availability of high-quality data on HCAIS	
16: Linkage in electronic health records	
17: Efficient Biomedical Image Data Integration	
18: Making service use data available accurately	
19: integration —	
20: Service and clinician uptake and implementation	
21: Sustainable collaborations for knowledge transfer	
22: Canvasing stakeholders en masse	
23: Engaging populations in providing data	
24: Patients input to design, delivery and evaluation	
25: Poor patient safety Reporting	
26: Effective Behaviour Change	
27: UX	
28: Impact of User Interface Design on Data Quality	
29: How to investigate knock-on effects	
30: Homeostasis	
31: Event sequence/process mining via language models	
32: Modelling and analysing episodic temporal data	
33: Realtime Data Analysis	
34: Exactly integrable Bayesian classification methods	
35: Robust machine learning based analysis	
36: Data mining challenges	
37: Sense making —	
38: Dealing with non-random missing data	
39: Noise and Missng Values in Healthcare Data	
40: Dealing with Missing data	
41: Messy data ——— 42: Messy data collected at variables times ———	
42: Messy data collected at variables times	
43. How to build models using messy, distructured data 44: Data cleaning and management standardisation	
44. Data cleaning and management standardisation -	
46: Knowing what is measured and what is not measured —	
47: Drive healthcare improvement by analysing bad data	
48: Understanding accuracy —	
49: Diversity of medical data available	
50: How to improve the relevance of the routine record	
51: Validity and utility in practical contexts	
52: Enrich health data with rich context & provenance	
53: Use of Genetic Data	
54: integration with biochemical models —	
55: Modelling the variability of human anatomy	
56: Identification of disease subtypes	
57: Discovering complex precursors for risk assessment	
58: Data analytics targeted pre-diabetes intervention	

Tree Map

1: Data Privac

 1: Data Privacy
 2: Privacy and security
Maintaining Privacy for Minority Population Groups
 4: ethics and anonymisation techniques
 5: Contidentiality balanced with beenness of data
 6: Blind access to data at the finest scale; patient
 7: Making health data more "open"
 8: Safe-haven's for multi-cohord data sharing
 9: Data managment standards
 3ta-Science-based Companion Diagnosties (CDV) ased Companion Diagnostics (CD) al timeline structured EPR Interfac 12: Testing systems for medical data collectio 13: The NHS Needs Tech Upgrad 13: The NHS Needs Tech Upgrad
 14: Data science capacity in the NH:
 15: Availability of high-quality data on HCAI:
 16: Linkage in electronic health record
 17: Efficient Biomedical Image Data Integratio
 18: Making service use data available accurate! 19: integration 20: Service and clinician uptake and implementation
 21: Sustainable collaborations for knowledge transfer
 22: Carvasing stakeholders on masse
 23: Engaging populations in providing data
 24: Patients input to design, delivery and evaluation
 25: Poor patient safety Reporting
 20: Diff. inf. Instrume Charles and the instrume Charles 21: SI 26: Effective Behaviour Chang 27: U 28: Impact of User Interface Design on Data Qu knock-on effe 30: Homeosta Event sequence/process mining via language models 32: Modelling and analysing episodic temporal data 33: Realtime Data Analysis 4: Exactly integrable Bayesian classification methods 34: E 35: Robust machine learning based analysi 36: Data mining challenge 37: Sense makin 38: Dealing with non-random missing dat 38: Dealing with non-random missing data 39: Noise and Miseng Values in Heathcare Data 40: Dealing with Missing data 41: Messy data collected at variables times 42: Messy data collected at variables times 43: Hovo to build models using messy, unstructured data 44. Data cleaning and management standardisation 45: hovo timgrove event data quality 46: Knowling what is measured and what is not measured 47: Drive heatthcare improvement by analysing bad data 48: Understanding accuracy 49: Diversity of medical data available 50: How to improve the relevance of the routine record 51: Validity and utility in practical contexts 52: Errich heatth data with rich context & provenance S1: Validity and utility in practical context S2: Enrich health data with rich context & provenanc S3: Use of Genetic Dat S4: integration with biochemical model S5: Modelling the variability of human anatom S6: Identification of disease subtype

UK Health Data Analytics Workshop - Materials Generated by Well-Sorted.Org

Raw Group Data

Colour	#	Title	Description
Red	1	Data Privacy	Healthcare has particularly critical privacy requirements. How can data privacy be guaranteed, monitored and tracked through a data science ecosystem in a way that is personalized to a user?
	2	Privacy and security	Availability, ownership and usage of data for healthcare purposes come with both challenges of protecting privacy and assuring cyber security functionalities.
	3	Maintaining Privacy for Minority Population Groups	Analysing a large healthcare data set may not pose considerable risk of re-identification for individual research subjects, but for small minority groups and isolated communities, with a particularly rare disease, maintaining privacy is more challenging
	4	ethics and anonymisation techniques	It is very challenging to anonymise identities and have consent from individuals in the healthcare system. In my opinion, the qualitative data should always support the quantitative ones, and this makes the ethics considerations more complex.
	5	Confidentiality balanced with openness of data	For data science to fully exploit the potential of health data, the integration of many types of data is required. The problem with data integration is that it poses risks of confidentiality as more types of hetergenous data are combined.
	6	Blind access to data at the finest scale: patient	Due to privacy and security getting data at individual or houselhold level is not possible. Nonetheless secure servers architecture with interoperability may allow computations at this level and render results at a higher geographical scale.
	7	Making health data more "open"	We are plagued by data sharing barriers: governance/disclosure restrictions, intellectual property issues or unsustainable to move large datasets. Requires an ethical-legal-social-technical solution to make biomedical data more accessible and reusable.
	8	'Safe-havens' for multi-cohort data sharing	There are a plethora of existing healthcare and social data in the UK but the single biggest barrier to effective linkage is governance. A pragmatic solution is the use of data safe-havens (e.g. Farr Institutes).
	9	Data managment standards	As a researcher involved in the experimental biomedical data management and analysis (RCUK grants) I found a lack of well characterized standards as one of the obstacle that effect my work.

Colour	#	Title	Description
Blue	10	Data-Science-based Companion Diagnostics (CDx)	Data Science can personalise healthcare. Drug regulators (FDA/EMA) may approve CDx to limit treatment only to those likely to benefit or not be harmed. Data-Science-based CDx must be strictly validated, available everywhere, and unchanged for years.

Colour	#	Title	Description
Green	11	A universal timeline structured EPR Interface	The timeline layered graphically rich EPR (cf UHS- Lifelines) offers a universal data structure for the integration & presentation of primary, 2ndary & social care records. The challenge is to implement this powerful NHS IT tool at local & national level.
	12	Testing systems for medical data collection	Although the miniaturisation of technology opens new possibilities of collecting healthcare data via wearable devices, testing prototype devices with participants suffering from neurological conditions often involves a lot of paperwork, delaying research.
	13	The NHS Needs Tech Upgrade	The NHS should take advantage of recent technological advancements in record keeping and real-time data collection as an opportunity to collaborate with researchers in utilising this info to help patients. Issues: confidentiality? Cost?
	14	Data science capacity in the NHS	Developing the skills across the NHS to understand what data science is and why it matters

Colour	#	Title	Description
Orange	15	Availability of high-quality data on HCAIS	It has been shown that integrating different hospital data sources can yield enhanced information for surveillance of a wide range of threats and this illustrates the need for integration of healthcare data from all sources.
	16	Linkage in electronic health records	The lack of direct linkage between some primary and secondary care databases can lead to difficulties in successfully tracking patients across centres. However, implementing a fully integrated system in the UK across all healthcare sites is problematic.
	17	Efficient Biomedical Image Data Integration	What kind of infrastructure enables data analytics involving very large, distributed clinical (PACS) and Life Science image data repositories, combining cloud computing, image compression and semantic web technologies? A multi-disciplinary challenge.
	18	Making service use data available accurately	Data on usage and access of health services is not properly recorded, nor widely available for researchers. Proposals to link health service use data to survey data have been made but how these will be carried out has not been forthcoming
	19	integration	how to integrate data from wearable sensors with information from traditional healthcare systems.

Colour	#	Title	Description
Purple	20	Service and clinician uptake and implementation	Clinicians often act as gatekeepers of mental health services. Therefore, clinicians views and attitudes effect type of healthcare received. Issues about how services manage complexities of real time, in-the- moment data collection.
	21	Sustainable collaborations for knowledge transfer	Sustainable collaboration and effective knowledge transfer will require the development of infrastructures and the formation of teams that share a common understanding of the potential benefits of data science for health care as well as its limitations.
	22	Canvasing stakeholders en masse	Extending tools like Well-Sorted and open innovation systems to harness the power of massed stakeholders to provide input on for instance, best practice patient support.
	23	Engaging populations in providing data	Much health care data is routine data on utilisation and costs, and lacks the other critical aspect for cost- effectiveness - quality of life and patient experience. How do we develop methods to collect patient reported data at scale?
	24	Patients input to design, delivery and evaluation	Need to make the data science tools accessible so that patients, professionals, managers, and policy folk can engage in the design, delivery and evaluation of healthcare. Research anticipated benefits and risks - and also to discover unintended outcomes.
	25	Poor patient safety Reporting	When it comes to patient safety data and incidents, there is a culture of poor and under reporting. Decisions made based on existing data tend to lack credibility due to poor confidence in the available data.
	26	Effective Behaviour Change	Using on line technology to change people's behaviour to improve wellbeing, follow treatment plans, and change lifestyle. Linking data analytic outcomes to low cost (ICT mediated) behaviour change.

Colour	#	Title	Description
Yellow	27	UX	Understanding the user-facing aspects required to convey complex information to multiple stakeholders.
	28	Impact of User Interface Design on Data Quality	Data quality issues resulting from variations in user interface design are non random and can act as a confounding factor on data science based on routine data. The causal relationship is evident but poorly understood.

Colour	#	Title	Description
Pink	29	How to investigate knock-on effects	Health data is often analysed in a series of discrete pipeline stages, but users rarely investigate the sensitivity of findings to decisions made earlier on during analysis. How can data science increase rigour by joining together this 'broken' workflow?
	30	Homeostasis	A characteristic of healthcare data is the fact that the time-series arise from a system with strong homeostasis - it is an individual that is actively attempting to restore itself to normality - this is a unique constraint for data science applications.
	31	Event sequence/process mining via language models	Standard data mining classifies and clusters unordered sets of data. health data has ordered sequences of events, more suited to language models from linguistics, e.g. n-gram taggers, Brill taggers and Chart parsers for tagging Part-of-Speech sequences.
	32	Modelling and analysing episodic temporal data	Consider recognising significant change in an individual's behaviour from wearable/IoT data. Since every day is different the challenge is how to go beyond crude averages (eg time spent sleeping, walking etc) to learn what is normal for that person.
	33	Realtime Data Analysis	There are many frameworks available for processing streaming realtime data (from medical sensors). Are these widely used? Can they be adapted to work with the tools that researchers currently use? Discuss.
	34	Exactly integrable Bayesian classification methods	Extracting clinically predictions from genomic data is presently done via so-called `gene signatures', which are poor man's alternatives to proper regression. One would prefer Bayesian methods, but in high dimensions they pose prohibitive CPU demands.
	35	Robust machine learning based analysis	The integration of machine learning approaches with traditional statistics is essential to deal with non- linearity and related variables within big data. A major associated challenge is the education of healthcare professionals in this approach.
	36	Data mining challenges	Data mining can unintentionally be misused, and can then produce results which appear to be significant; but which do not actually predict future behavior and cannot be reproduced on a new sample of data and bear little use.
	37	Sense making	Connecting analytical results with domain knowledge!
		•	•

Colour	#	Title	Description
Silver	38	Dealing with non-random missing data	Data can sometimes be included or excluded due to it's relavence to an outcome, such as GP's being more likely to update or record smoking or BMI data if they think it is likely to become a health issue. This can make account for these measures difficult
	39	Noise and Missng Values in Healthcare Data	Healthcare data may have noise and missing values. If these are not handled appropriately, the results of the analysis may not be accurate. Human knowledge and data pre-processing methods can be used to clean noise and handle missing values in data.
	40	Dealing with Missing data	Missing data can be informative and hence need state- of-the-art modelling techniques to overcome this problem.
	41	Messy data	Dealing with missing and low quality data - managing uncertainty and interpolating between data points. Identifying which points are more likely to be accurate.
	42	Messy data collected at variables times	Routinely collected are messy (not systematically recorded) and collected at different points in time
	43	How to build models using messy, unstructured data	Statistical modelling is based on samples of complete data arising from a designed experiment. But healthcare data has a complex data generating process, missingness and lack of structure.
	44	Data cleaning and management standardisation	Analysing data for health care research normally requires a stage of cleaning and subsequent manipulation before analysis can be undertaken. This stage is often done by the researcher rather than at data source introducing repetition and inconsistency.
	45	how to improve event data quality	how do we improve the quality of the data to underpin information and knowledge in delivering healthcare
	46	Knowing what is measured and what is not measured	One of the biggest challenges of using routine health data is knowing what gets measured, when, by whom and to what standard. Routine NHS systems are not often equipped for the purposes of large scale data extraction which limits research potential.
	47	Drive healthcare improvement by analysing bad data	NHS IT systems are a mess. Operational data is a mess, and many patient records have major errors. Many systems use proprietary "standards". Data can take weeks to flow end to end (even if it gets there) the mess needs exposing and critiquing!
	48	Understanding accuracy	We're all familiar with papers where the algorithm performance results are optimistic (to put it politely). Is this just bad practice or do we need new tools to understand the performance of algorithms when working with Big Data?
	49	Diversity of medical data available	Medical records fall in the category of 'big data'. However, healthcare data is also multi-modal and extremely complex and noisy. A huge data science research challenge is to find methods to incorporate data of different types and from different sources.

50	How to improve the relevance of the routine record	Methods are needed to address the inadequate attention paid to outcome measurement in clinical care, research, and consumer health applications, in order to reduce avoidable waste in health data analytics.
51	Validity and utility in practical contexts	Tools and methods developed must have validity and utility for clinicians and medical professionals in practical contexts. Factors such as technical infrastructure, required expertise, data quality and usage context must be considered in their design.
52	Enrich health data with rich context & provenance	Representation of data at the point of care is disappointing. For trrue Learning Health systems clinicians need rich context/provenance, as well as the ability to synthesise new best practice through system learning. Secondary use data isn't sufficient.

Colour	#	Title	Description
Brown	53	Use of Genetic Data	New methods are needed to store, access and interpret genetic data and its impact on human health.
	54	integration with biochemical models	Making genetic or protein databases with more knowledge of function in the cell, of facilitate hypothesis formation and reduce false positives on data mining.
	55	Modelling the variability of human anatomy	There are millions of images of parts of human bodies in hospital databases. It should be possible to use them to build statistical models of how human anatomy varies across the population. However, the data is very variable and only weakly annotated.
	56	Identification of disease subtypes	Large data sets if linked data sets allow us to identify disease subtypes that are currently not captures by existing disease categories (e.g. Cancer grade). The identification of these and the associated statistics pose significant challenges.
	57	Discovering complex precursors for risk assessment	Opportunity: simultaneous emergence of large clinical bioresources (eg UKBB), distr'd powerful computing platforms, analytics algorithms, & medical signal/img analysis. Challenge: discover complex, heterogeneous sets of 'measures' predicting disease risk.
	58	Data analytics targeted pre- diabetes intervention	Data analytics can be used to predict which people are more likely to develop diabetes, based on various lifestyle markers, and anti-diabetic medication can be prescribed to this population. This is a goal of the Diabetes Prevention Programme.

Data Integration		ORANGE
Research Challenge #1:		
 Linkage of multi-stakeholder data sources Silo'd information (e.g. patient collected data vs. EHR data vs. HCP points of care) CDIM 		
Research Challenge #2:		
 Identifying relevant data to particular caregiving scenarios & personalised views of such data HCL - visualisation 		
Research Challenge #3:		
 Clinical image data integration Semantics of images Data analytics over PACS systems 		
If you wish, draw a diagram which represents your group's area, below:		

Damn!		RED
Research Challenge #1: Barriers		
 Information governance: confidentiality and privacy (Caldicott report expected in Jan) Social: fear Organisational: bureaucracy & individuals (dog in manager, conspiracy/mess up, technical blocks – don't understand the coal face) Technical: open pseudonymiser Solution – locality warehouses 		
Research Challenge #2: Open-ness & Transparer	ТСУ	
 Fear: professional/patient – dispel – publish data held & what used Data sets : patient level = few. Aggregate – anonymised – publish "CDC – Wonder" Build trust 		
Research Challenge #3: Infrastructure & funding		
 Data Quality a problem (technical, coding, architecture, standards) Connecting silos Best practice SNOMED-CT is coming! Primary Care 		
If you wish, draw a diagram which represents your group's area, below:	Group Members: Dai Evans Duncan Appelbe Allan Tucker Para Vezyridis Dave Robertson Natalie Schlomo	Chris Smith Lydia Drumright Grant Thiltgen Becca Wilson Olly Butters

HCI		YELLOW
Research Challenge #1:		
 How to design interfaces to better effect behavioural change Encourages data collection – non litigious Applies to both patients/healthcare professionals There is a reason/benefit for more data 		
Research Challenge #2:		
 How information is presented Universal platform/more personalised Talking into account all stakeholders/users 		
 Research Challenge #3: High quality data – minimum effort How do we support data collection to minimise noise? 		
If you wish, draw a diagram which represent your group's area, below: Group Members: Caroline Jay Simon Harper Ruth Norris Kieran O'Malley		

Getting the Basics Right		GREEN
Research Challenge #1: End user engagement		
• Sterling end user (health professional) eng	gagement	
 Paper – paperless transition 		
 Optimising – interfaces/systems 		
 Out of which – better data capture 		
Research Challenge #2: Agile by-product of Norma	al Clinical Activity	
 Early engagement of health informatics community in system design Agile – iterative "Natural by-product of activity" Designing "values" & "ethics" into software systems 		
Research Challenge #3: Education		
 Workforce education – digital transformation (understanding). Skills upgrade + gaps Capacity issues Dilemma agile vs. "enterprise hardening" 	 Universities Schools Nat Comp Currie Post-grad institut e.g. Farr institut 	utions
If you wish, draw a diagram which represents your group's area, below:	Group Members: David Rew Theodoros Georghiou George Moulton Jon Whittle	

	Rivers of Data		PINK
Research Challenge #1: Mar	riage of Human & Ma	chine	
Interpretability			
Role of expert			
 Personal responsibil 	ity		
Co-development of	models		
Research Challenge #2: Chai	acterising complex te	emporal structure	
High dimensionality	vs low-N diversity		
 "N of 1" models pov 	vered by population r	nodels	
Temporal model evo	olution		
 Exploiting system ch 	aracteristics (e.g. hor	neostasis)	
Research Challenge #3: Gua	ranteeing robustness	(of models)	
Calibration drift			
 Quantifying/managi 	ng uncertainty		
Characterising gene	ralisability (or predict	ing it?!)	
 Verification 			
If you wish, draw a diagram	Group Members:		
which represents your	Jim Weatherall	Thomas Ploetz	Theo Kypraios
group's area, below:	Chris Taylor	Joe Mellor	David Prieto-Merino
	David Hogg	Stephen Swift	David Clifton
	John Keane	Anthony Coolen	Arief Gusnanto
	Alistair Willis	Maarten De Vos	
	Adele Marshall	Owen Johnson	

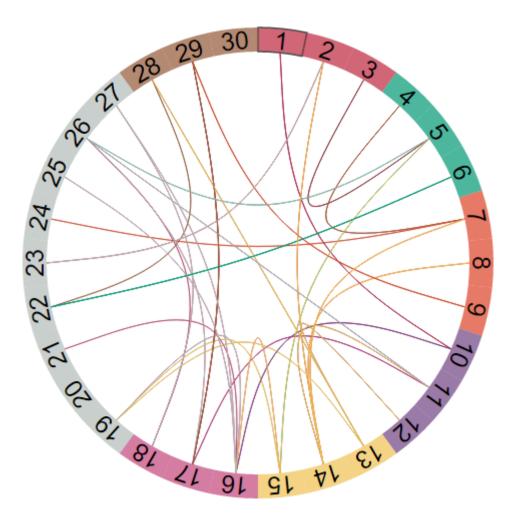
People and Data		PURPLE		
Research Challenge #1:	Research Challenge #1:			
One size doesn't fit all when people was	nt to view/interact/share/co	ollect their data		
Research Challenge #2:				
Communication: advancing clinical decision-making/for improving patient outcomes/health				
Research Challenge #3:	Research Challenge #3:			
How do we use data to change patient b	pehaviour?			
If you wish, draw a diagram which represents	Group Members:			
your group's area, below:	Amitara Banerjee			
	Alistair Sutcliffe			
	Ann Blanford			
	Peter Bower			
	Ibrahim Habli			
	David Schultz			

Analysis Pipeline		BROWN	
Research Challenge #1: Data Integration			
 Bring together data from different groups/sources How to encourage collaboration, data sharing and common standards 			
Research Challenge #2: Learning Structure from	Data		
 Finding useful features + explanation Need new algorithms for huge data sets Effective use of prior info/models 			
Research Challenge #3: Stratification & disease subtypes			
Find disease subtypesEarly diagnosisPersonalise treatment			
If you wish, draw a diagram which represents your group's area, below:	Group Members: Tim Cootes Robert Stevens Sacha Manson-Smith Jens Rittscher Jo Knight Edwin Beggs		

From dodginess to rigo	our	SILVER A
Research Challenge #1: Understanding dodginess	in all its guises	
 Provenance recorded Assessing data quality Statistics, visualization, automation The human factor Understand data "fingerprint" 		
Research Challenge #2: Reduce preparation cost to only 30%		
 Re-use by remote 3 parties Assimilation/data integration Data standards/formats/interchange 		
Research Challenge #3: Allow low-effort rigorous a	analysis that is holistic	
 Linked to resources & established knowledge about the data Sensitivity, uncertainty due to data and processing Propagation of confidence intervals across analysis workflow Validate assumptions made during analysis, at each stage of the processing pipeline 		
If you wish, draw a diagram which represents your group's area, below:	Group Members: Roy Ruddle Kayleigh Mason Daniel Neagu Niels Peek	Jane Sargison Michael Stone Alex Casson

Standardisation & Scaling		SILVER B	
Research Challenge #1:			
 Appropriate standards (data collection) Appropriate data/metadata 			
Research Challenge #2:			
Understanding the barriers to implementing standardisation			
Research Challenge #3:			
 Building on the best of the past Boosting at scale 			
If you wish, draw a diagram which represents your group's area, below: Group Members: Charlie McCay Emanuele Trucco Matthew Sperrin Daniele Soria Tarani Chandola			

Improving modelling of real v	vorld data	SILVER C	
Research Challenge #1:			
 Machine learning to provide robust models for working with real world data in a variety of applications 			
Research Challenge #2:			
 Develop methodologies to improve current practice and lack of consensus in decision making: efforts to improve underlying data to get closer to "perfect" data against using methods to report on uncertainty of results based on complexity of data 			
Research Challenge #3:			
 Can we better understand and improve the transparency of domain specific knowledge: Accuracy of results Provenance of data items Steps/assumptions made Human/clinician/computer interactions 			
If you wish, draw a diagram which represents your group's area, below:	Group Members: Colin McCowan Ian Craddock George Demetriou Andrew Dowsey	David Tian Samantha Crossfield Tjeerd Van Staa Alison Noble	


Research Challenges Elevator Pitch Video Playlist

	Well-Sorted.org Videos Playlists Channels About	
UK Health Data Analytics Workshap Research Challenge - th January 2016 UMNNE Well Scotted arguing the works	UK Health Data Analytics Workshop (Research Challenges)	
UK Health Data And UK Health Data And by Well-Sorted.org	alytics Workshop (Research Challenges) - Orange Elevator Pitch	1:39
2 UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Red Elevator Pitch	1:35
3 UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Yellow Elevator Pitch	1:20
4 UK Health Data Ana UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Green Elevator Pitch	1:01
5 UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Pink Elevator Pitch	1:24
6 UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Purple Elevator Pitch	1:34
7 UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Brown Elevator Pitch	0:59
8 UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Silver A Elevator Pitch	1:08
9 UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Silver B Elevator Pitch	1:21
10 UK Health Data Ana by Well-Sorted.org	alytics Workshop (Research Challenges) - Silver C Elevator Pitch	1:25

https://www.youtube.com/playlist?list=PLB-YaUclLgfN99TpsTsSwgnLpslkvxdAX

Research Challenges Networking Visualisation

The ideas presented in this visualisation are from the 3 consolidated challenges presented by each breakout group

Idea Description A	Idea Description B	Comment	People
Develop methodologies to improve current practice and lack of consensus in more	Guaranteeing robustness (of models):- Calibration drift; Quantifying/managi more	Understanding how to get benefit from data/machine leaving outputs. Even wh more	Colin McCowan, Alistair Willis
Understanding dodginess in all its guises:- Provenance recorded; Assessing more	How to design interfaces to better effect behavioural change; Encourages da more	Yellow: Data quality + being "trustworthy" Brown: How data captured + impro more	Kayleigh, Ruth Norris
Understanding dodginess in all its guises:- Provenance recorded; Assessing more	High quality data – minimum effort; How do we support data collection to m more	Data production - analytics pipeline/ data quality issues/ human factors	Niels Peek, Caroline Jay
Building on the best of the past; Boosting at scale	Linkage of multi-stakeholder data sources; SiloÂ'd information (e.g. patien more	Building on tools developed in TRANSFORM Project. Workshop on Standards nee more	Charlie McCoy, Samhar Mahmoud
Appropriate standards (data	Data Integration:- Bring	Lack of standards and importance	Daniele Soria, Tim

collection); Appropriate data/metadata	together data from different groups/sources; How t more	of having standards so that large meaningf more	Cootes
Characterising complex temporal structure:- High dimensionality vs low-N di more	Develop methodologies to improve current practice and lack of consensus in more	Methods for improved clinical decision making.	Anthony Coolen,
Allow low-effort rigorous analysis that is holistic:- Linked to resources & more	Marriage of Human & Machine:- Interpretability; Role of expert; Persona more	Data processing includes many assumptions (parameters; model; domain-based) more	Roy Ruddle, Thomas Ploetz
Guaranteeing robustness (of models):- Calibration drift; Quantifying/managi more	Can we better understand and improve the transparency of domain specific kn more	Focus on System failure through data provenance etc.	David Hogg,
Marriage of Human & Machine:- Interpretability; Role of expert; Persona more	Understanding dodginess in all its guises:- Provenance recorded; Assessing more	Heterogeneity and Quality	Daniel Neagu,
Appropriate standards (data collection); Appropriate data/metadata	Education:- Workforce education – digital transformation (understanding) S more	Digital health - educating the workforce on options and potentials. Accumul more	Tim Croudace, David Rew
Identifying relevant data to particular caregiving scenarios & personal more	How information is presented; Universal platform/more personalised; Talking more	High Quality data. Modifying data. River more effective. (Connection from O more	Caroline, Kieran
Communication: advancing clinical decision-making/for improving patient out more	Characterising complex temporal structure:- High dimensionality vs low-N di more	'Marriage of Human and Machine'. Discussed how much to trust output from ma more	Dave, Anthony
Characterising complex temporal structure:- High dimensionality vs low-N di more	Learning Structure from Data:- Finding useful features + explanation; Need more	The use of healthcare and omics data for prediction of disease subtypes by more	Arief Gusnanto,
Characterising complex temporal structure:- High dimensionality vs low-N di more	Learning Structure from Data:- Finding useful features + explanation; Need more	Rivers of data. Characterising complete temporal structures (e.g. homeostas more	Owen,
One size doesnÂ't fit all when people want to view/interact/share/collect t more	Barriers:- Information governance: confidentiality and privacy (Caldicott r more	The use of data all the way through its heath care life cycle is dependent more	Ami Banerjee, Dai Evans
Marriage of Human & Machine:- Interpretability; Role of expert; Persona more	One size doesn't fit all when people want to view/interact/share/collect t more	Focus on human/machine relationships. The context for Pink 1 is 'Rivers of more	David Hogg,
Learning Structure from Data:- Finding useful	Clinical image data integration; Semantics of images; Data	Extracting structured information/features from images	Tim Cootes, Albert Burger

features + explanation; Need more	analytics over P more	to enable further an more	
Agile by-product of Normal Clinical Activity:- Early engagement of health i more	Infrastructure & funding:- Data Quality a problem (technical, coding, a more	To connect silos and share best practice to overcome barriers (Red#3) throu more	Dai (and Red Team), George
End user engagement:- Sterling end user (health professional) engagement; Pa more	Linkage of multi-stakeholder data sources; Silo'd information (e.g. patien more	The development of advanced timeline structured EPRs in the Southampton Cli more	David Rew, Orange Team originator of Idea16
How do we use data to change patient behaviour?	How to design interfaces to better effect behavioural change; Encourages da more	Both behaviour change, understanding people and the ways they/we engage wit more	Ann B., Simon Harper
Data Integration:- Bring together data from different groups/sources; How t more	How to design interfaces to better effect behavioural change; Encourages da more	Effecting behaviour change by integrating disparate data sources and provid more	Sacha, Caroline
Marriage of Human & Machine:- Interpretability; Role of expert; Persona more	High quality data – minimum effort; How do we support data collection to m more	Including people in the loop and using that to ensure collection of better/ more	Chris Taylor, Kieran
Marriage of Human & Machine:- Interpretability; Role of expert; Persona more	Can we better understand and improve the transparency of domain specific kn more	Improve understanding, reporting and use of uncertainty in data.	,
Communication: advancing clinical decision-making/for improving patient out more	How information is presented; Universal platform/more personalised; Talking more	The 'people' factor in presenting, collecting and using data. (Connection f more	Caroline, People and Data group (Purple)
Linkage of multi-stakeholder data sources; SiloÂ'd information (e.g. patien more	How information is presented; Universal platform/more personalised; Talking more		Caroline, Niels Peek grp - Ruth
Agile by-product of Normal Clinical Activity:- Early engagement of health i more	High quality data – minimum effort; How do we support data collection to m more	(Connection from Green group to Yellow 3)	Caroline (Yellow), Green - Ruth
Agile by-product of Normal Clinical Activity:- Early engagement of health i more	Develop methodologies to improve current practice and lack of consensus in more	Platform for showing best practice and knowledge. (Connection from Silver C more	Tjeerd, George
Marriage of Human & Machine:- Interpretability; Role of expert; Persona more	Machine learning to provide robust models for working with real world data more	Challenge 3 vs. 3. (Connection from Pink to Silver C)	Steve Swift, Colin McGowan
Communication: advancing	Develop methodologies to	Use of data mining to analyse	David Tian,

clinical decision-making/for improving patient out more	improve current practice and lack of consensus in more	incident reports which are lacking in terms o more	Ibrahim Habli
Appropriate standards (data collection); Appropriate data/metadata	Education:- Workforce education – digital transformation (understanding) S more	Human factors of data and metadata collection Making it easier for clini more	Jon, Tarani
Open-ness & Transparency:- Fear: professional/patient – dispel – publ more	Understanding the barriers to implementing standardisation	Longitudinal data. (Groups omitted. So these were inferred from the names g more	Allan Tucker, Matthew Sperrin
Open-ness & Transparency:- Fear: professional/patient – dispel – publ more	How information is presented; Universal platform/more personalised; Talking more	RC1 RC 2 (Connection from Challenge no. 27 to Challenge no.16)	Sheldon, Caroline

Miscellaneous Meeting Details

UK Health Data Analytics Network Inaugural Workshop

Wednesday 6 January 2016, 1530 - 2100 Thursday 7 January 2016, 0900 - 1600 Chancellors Hotel, Manchester

Agenda

Wifi: Eduroam & The Cloud

Wednesday 6 January

1530 - 1600	Registration	
1600 - 1615	Welcome & Introduction	Chris Taylor - Associate Vice President for Research, The University of Manchester
1615 - 1700	Farr: Epidemiologic Adventures for Data Scientists (Open Floor Q&A)	lain Buchan - Director, Farr Institute for Health Informatics Research
1700 - 1800	Breakout: Healthcare Opportunities	All
1800 - 1830	Healthcare Opportunities Feedback Session	All
1830 - 1900	Finding Healthcare Opportunities Connections	All
1900 - 2100	Dinner	

Thursday 7 January

The Alan Turing Institute and challenges for big data in healthcare (Open Floor Q&A)		Ann Blandford - Director, UCL Institute of Digital Health, The Alan Turing Institute	
0945 - 1100	Breakout: Research Challenges	All	
1100 -1130	Research Challenges Feedback Session	All	

e University of Mancheste

🎐 @Man_Inf @EPSRC @herc_farr #UKHDAN

VR

		HERE PERMIT	
130 - 1200	Finding Research Challenge Connections	All	
200 - 1230	Research Landscape Presentation	Chris Taylor	
1230 - 1330	Lunch	RESCURE TO	
1330 - 1430	Breakout: Research Landscape	All	
1430 - 1500	Research Landscape Feedback Session	All	
1500 - 1530	Next Steps- Future plans for the UK Health Data Analytics Network	Ann Blandford & Chris Taylor	
-United	Close	a horal angle and	

У @Man_Inf @EPSRC @herc_farr #UKHDAN

Page 64

Page 66

Page 67

