UK Health Data Analytics Workshop: Well Sorted Materials

7th January 2016

Contents	
Introduction	1
Dendrogram	2
Тгее Мар	3
Heat Map	4
Raw Group Data	5

For an online, interactive version of the visualisations in this document, go here:

www.well-sorted.org/output/UKHDANTechnologyChallenges

Introduction

Dear participant,

Thank you for taking part in submitting and sorting your ideas.

This document contains several visualisations of your ideas, grouped by the average of your online sorts. They are:

Dendrogram - This tree shows each submitted idea and its similarity to the others. The lower two ideas 'join' the more people grouped those two ideas together. For example, if two ideas join at the bottom, every person grouped those two together.

Tree Map - This visualisation presents an 'average' grouping. It is calculated by 'cutting' the Dendrogram at the dashed line so that any items which join lower than that line are placed in the same group. In addition, rectangles which share a side of the same length are more similar to each other than their peers.

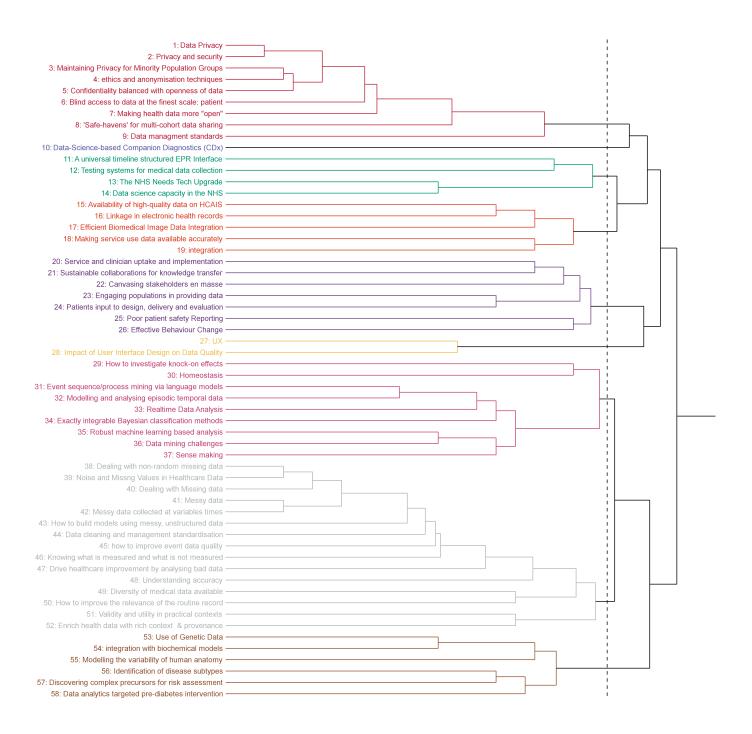
Heat Map - This visualisation shows a similarity matrix where each idea is given a colour at the intersection with another idea, showing how similar the two are. This is useful to see how well formed a group is. The more red there is in a group (shown by the black lines), the more similar the ideas inside it were judged to be.

Raw Group Data - This table shows every submitted idea and its longer description. They are shown in the same order as the Dendrogram (so similar ideas are close to each other) and split into the coloured groups used in the Tree Map. In addition, each idea has been given a unique number so they are easier to find.

References

[1] Methven, T. S., Padilla, S., Corne, D. W., & Chantler, M. J. (2014, February). Research Strategy Generation: Avoiding Academic 'Animal Farm'. In Proceedings of the companion publication of the 17th ACM conference on Computer supported cooperative work & social computing (pp. 25-28). ACM. doi>10.1145/2556420.2556785

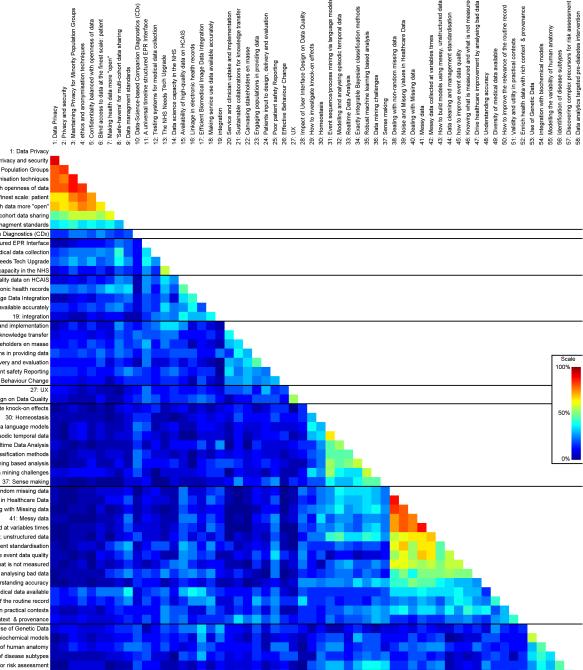
Dendrogram



23: Engaging populations in providing data 26: Effective Behaviour Change	20: Service and clinician uptake and implementation	10: Data- Science-based Companion Diagnostics (CDx)	a. Dara managment standards	acy or ility alth alth
Ę	21: Sustainable collaborations for knowledge transfer 24- Batiante	BLUE	RED	2: Privacy and security 4: ethics and anonymisation techniques 6: Blind access to data at the finest scale: patient 8: 'Safe- havens' for multi-cohort data sharing
PURPLE	22: Canvasing stakeholders en masse 25: Poor patient	service use data available accurately 19: integration	15: Availability of high-quality data on HCAIS 16: Linkage in electronic health records 17: Efficient Biomedical Image Data Integration 18: Making	11: A universal timeline structured EPR Interface 13: The NHS Needs Tech Upgrade
YELLOW	27: UX 28: Impact of User Interface Design on Data	ORANG	E	12: Testing systems for medical data collection 14: Data science capacity in the NHS
53: Use of Genetic Data 57: Discovering complex precursors for risk assessment		challenges 37: Sense making	33: Realtime Data Analysis 34: Exactly integrable Bayesian classification methods 35: Robust machine learning based analysis 36: Data mining	 29: How to investigate knock-on effects 30: Homeostasis 31: Event sequence/process mining via language models 32: Modelling and analysing episodic temporal data
54: integration with biochemical of 58: Data analytics targeted pre- diabetes intervention	<u>PINK</u>		50: How to improve the routine record	38: Dealing with non-random missing data 41: Messy data cleaning and cleaning and management standardisation 47: Drive healthcare improvement by analysing bad
55: Modelling the variability of human anatomy				g with 39: Noise and data Healthcare Data data 42: Messy data collected at ta variables times and 45: how to nent improve event data quality ve 48: are 48: are 48: are 51: Validity and
56: of disease subtypes	SILVER		p ric	nnd 40: Dealing with es in Missing data Data 43: How to build at models using at messy, mes unstructured o data o 46: Knowing what ty is measured and what is not measured ling 49: Diversity of medical data and available

Tree Map

Heat Map



2: Privacy and security 3: Maintaining Privacy for Minority Population Groups 4: ethics and anonymisation techniques 5: Confidentiality balanced with openness of data 6: Blind access to data at the finest scale: patient 7: Making health data more "open" 8: 'Safe-havens' for multi-cohort data sharing 9: Data managment standards 10: Data-Science-based Companion Diagnostics (CDx 11: A universal timeline structured EPR Interfa 12: Testing systems for medical data collection 13: The NHS Needs Tech Upgrad 14: Data science capacity in the NHS Availability of high-quality data on HCAIS 16: Linkage in electronic health records 17: Efficient Biomedical Image Data Integration 18: Making service use data available accuratel 20: Service and clinician uptake and implementation 21: Sustainable collaborations for knowledge transfer 22: Canvasing stakeholders en masse 23: Engaging populations in providing data 24: Patients input to design, delivery and evaluation 25: Poor patient safety Reporting 26: Effective Behaviour Change 28: Impact of User Interface Design on Data Quality 29: How to investigate knock-on effects 31: Event sequence/process mining via language models32: Modelling and analysing episodic temporal data 33: Realtime Data Analysi 34: Exactly integrable Bayesian classification methods 35: Robust machine learning based analysis 36: Data mining challenges 37: Sense making 38: Dealing with non-random missing data 39: Noise and Missng Values in Healthcare Data 40: Dealing with Missing data 42: Messy data collected at variables times to build models using messy, unstructured data 44: Data cleaning and management standardisation 45: how to improve event data quality 46: Knowing what is measured and what is not measure 47: Drive healthcare improvement by analysing bad data 48: Understanding accuracy 49: Diversity of medical data available 50: How to improve the relevance of the routine record 51: Validity and utility in practical contexts 52: Enrich health data with rich context & provenance 53: Use of Genetic Data

53: Use of Genetic Data 54: integration with biochemical models 55: Modelling the variability of human anatomy 56: Identification of disease subtypes 57: Discovering complex precursors for risk assessment 58: Data analytics targeted pre-diabetes intervention

Raw Group Data

Colour	#	Title	Description
Red	1	Data Privacy	Healthcare has particularly critical privacy requirements. How can data privacy be guaranteed, monitored and tracked through a data science ecosystem in a way that is personalized to a user?
	2	Privacy and security	Availability, ownership and usage of data for healthcare purposes come with both challenges of protecting privacy and assuring cyber security functionalities.
	3	Maintaining Privacy for Minority Population Groups	Analysing a large healthcare data set may not pose considerable risk of re-identification for individual research subjects, but for small minority groups and isolated communities, with a particularly rare disease, maintaining privacy is more challenging
	4	ethics and anonymisation techniques	It is very challenging to anonymise identities and have consent from individuals in the healthcare system. In my opinion, the qualitative data should always support the quantitative ones, and this makes the ethics considerations more complex.
	5	Confidentiality balanced with openness of data	For data science to fully exploit the potential of health data, the integration of many types of data is required. The problem with data integration is that it poses risks of confidentiality as more types of hetergenous data are combined.
	6	Blind access to data at the finest scale: patient	Due to privacy and security getting data at individual or houselhold level is not possible. Nonetheless secure servers architecture with interoperability may allow computations at this level and render results at a higher geographical scale.
	7	Making health data more "open"	We are plagued by data sharing barriers: governance/disclosure restrictions, intellectual property issues or unsustainable to move large datasets. Requires an ethical-legal-social-technical solution to make biomedical data more accessible and reusable.
	8	'Safe-havens' for multi-cohort data sharing	There are a plethora of existing healthcare and social data in the UK but the single biggest barrier to effective linkage is governance. A pragmatic solution is the use of data safe-havens (e.g. Farr Institutes).
	9	Data managment standards	As a researcher involved in the experimental biomedical data management and analysis (RCUK grants) I found a lack of well characterized standards as one of the obstacle that effect my work.

Colour	#	Title	Description
Blue	10	Data-Science-based Companion Diagnostics (CDx)	Data Science can personalise healthcare. Drug regulators (FDA/EMA) may approve CDx to limit treatment only to those likely to benefit or not be harmed. Data-Science-based CDx must be strictly validated, available everywhere, and unchanged for years.

Colour	#	Title	Description
Green	11	A universal timeline structured EPR Interface	The timeline layered graphically rich EPR (cf UHS- Lifelines) offers a universal data structure for the integration & presentation of primary, 2ndary & social care records. The challenge is to implement this powerful NHS IT tool at local & national level.
	12	Testing systems for medical data collection	Although the miniaturisation of technology opens new possibilities of collecting healthcare data via wearable devices, testing prototype devices with participants suffering from neurological conditions often involves a lot of paperwork, delaying research.
	13	The NHS Needs Tech Upgrade	The NHS should take advantage of recent technological advancements in record keeping and real-time data collection as an opportunity to collaborate with researchers in utilising this info to help patients. Issues: confidentiality? Cost?
	14	Data science capacity in the NHS	Developing the skills across the NHS to understand what data science is and why it matters

Colour	#	Title	Description
Orange	15	Availability of high-quality data on HCAIS	It has been shown that integrating different hospital data sources can yield enhanced information for surveillance of a wide range of threats and this illustrates the need for integration of healthcare data from all sources.
	16	Linkage in electronic health records	The lack of direct linkage between some primary and secondary care databases can lead to difficulties in successfully tracking patients across centres. However, implementing a fully integrated system in the UK across all healthcare sites is problematic.
	17	Efficient Biomedical Image Data Integration	What kind of infrastructure enables data analytics involving very large, distributed clinical (PACS) and Life Science image data repositories, combining cloud computing, image compression and semantic web technologies? A multi-disciplinary challenge.
	18	Making service use data available accurately	Data on usage and access of health services is not properly recorded, nor widely available for researchers. Proposals to link health service use data to survey data have been made but how these will be carried out has not been forthcoming
	19	integration	how to integrate data from wearable sensors with information from traditional healthcare systems.

Colour	#	Title	Description
Purple	20	Service and clinician uptake and implementation	Clinicians often act as gatekeepers of mental health services. Therefore, clinicians views and attitudes effect type of healthcare received. Issues about how services manage complexities of real time, in-the- moment data collection.
	21	Sustainable collaborations for knowledge transfer	Sustainable collaboration and effective knowledge transfer will require the development of infrastructures and the formation of teams that share a common understanding of the potential benefits of data science for health care as well as its limitations.
	22	Canvasing stakeholders en masse	Extending tools like Well-Sorted and open innovation systems to harness the power of massed stakeholders to provide input on for instance, best practice patient support.
	23	Engaging populations in providing data	Much health care data is routine data on utilisation and costs, and lacks the other critical aspect for cost- effectiveness - quality of life and patient experience. How do we develop methods to collect patient reported data at scale?
	24	Patients input to design, delivery and evaluation	Need to make the data science tools accessible so that patients, professionals, managers, and policy folk can engage in the design, delivery and evaluation of healthcare. Research anticipated benefits and risks - and also to discover unintended outcomes.
	25	Poor patient safety Reporting	When it comes to patient safety data and incidents, there is a culture of poor and under reporting. Decisions made based on existing data tend to lack credibility due to poor confidence in the available data.
	26	Effective Behaviour Change	Using on line technology to change people's behaviour to improve wellbeing, follow treatment plans, and change lifestyle. Linking data analytic outcomes to low cost (ICT mediated) behaviour change.

Colour	#	Title	Description
Yellow	27	UX	Understanding the user-facing aspects required to convey complex information to multiple stakeholders.
	28	Impact of User Interface Design on Data Quality	Data quality issues resulting from variations in user interface design are non random and can act as a confounding factor on data science based on routine data. The causal relationship is evident but poorly understood.

Colour	#	Title	Description
Pink	29	How to investigate knock-on effects	Health data is often analysed in a series of discrete pipeline stages, but users rarely investigate the sensitivity of findings to decisions made earlier on during analysis. How can data science increase rigour by joining together this 'broken' workflow?
	30	Homeostasis	A characteristic of healthcare data is the fact that the time-series arise from a system with strong homeostasis - it is an individual that is actively attempting to restore itself to normality - this is a unique constraint for data science applications.
	31	Event sequence/process mining via language models	Standard data mining classifies and clusters unordered sets of data. health data has ordered sequences of events, more suited to language models from linguistics, e.g. n-gram taggers, Brill taggers and Chart parsers for tagging Part-of-Speech sequences.
	32	Modelling and analysing episodic temporal data	Consider recognising significant change in an individual's behaviour from wearable/IoT data. Since every day is different the challenge is how to go beyond crude averages (eg time spent sleeping, walking etc) to learn what is normal for that person.
	33	Realtime Data Analysis	There are many frameworks available for processing streaming realtime data (from medical sensors). Are these widely used? Can they be adapted to work with the tools that researchers currently use? Discuss.
	34	Exactly integrable Bayesian classification methods	Extracting clinically predictions from genomic data is presently done via so-called `gene signatures', which are poor man's alternatives to proper regression. One would prefer Bayesian methods, but in high dimensions they pose prohibitive CPU demands.
	35	Robust machine learning based analysis	The integration of machine learning approaches with traditional statistics is essential to deal with non- linearity and related variables within big data. A major associated challenge is the education of healthcare professionals in this approach.
	36	Data mining challenges	Data mining can unintentionally be misused, and can then produce results which appear to be significant; but which do not actually predict future behavior and cannot be reproduced on a new sample of data and bear little use.
	37	Sense making	Connecting analytical results with domain knowledge!

Colour	#	Title	Description
Silver	38	Dealing with non-random missing data	Data can sometimes be included or excluded due to it's relavence to an outcome, such as GP's being more likely to update or record smoking or BMI data if they think it is likely to become a health issue. This can make account for these measures difficult
	39	Noise and Missng Values in Healthcare Data	Healthcare data may have noise and missing values. If these are not handled appropriately, the results of the analysis may not be accurate. Human knowledge and data pre-processing methods can be used to clean noise and handle missing values in data.
	40	Dealing with Missing data	Missing data can be informative and hence need state- of-the-art modelling techniques to overcome this problem.
	41	Messy data	Dealing with missing and low quality data - managing uncertainty and interpolating between data points. Identifying which points are more likely to be accurate.
	42	Messy data collected at variables times	Routinely collected are messy (not systematically recorded) and collected at different points in time
	43	How to build models using messy, unstructured data	Statistical modelling is based on samples of complete data arising from a designed experiment. But healthcare data has a complex data generating process, missingness and lack of structure.
	44	Data cleaning and management standardisation	Analysing data for health care research normally requires a stage of cleaning and subsequent manipulation before analysis can be undertaken. This stage is often done by the researcher rather than at data source introducing repetition and inconsistency.
	45	how to improve event data quality	how do we improve the quality of the data to underpin information and knowledge in delivering healthcare
	46	Knowing what is measured and what is not measured	One of the biggest challenges of using routine health data is knowing what gets measured, when, by whom and to what standard. Routine NHS systems are not often equipped for the purposes of large scale data extraction which limits research potential.
	47	Drive healthcare improvement by analysing bad data	NHS IT systems are a mess. Operational data is a mess, and many patient records have major errors. Many systems use proprietary "standards". Data can take weeks to flow end to end (even if it gets there) the mess needs exposing and critiquing!
	48	Understanding accuracy	We're all familiar with papers where the algorithm performance results are optimistic (to put it politely). Is this just bad practice or do we need new tools to understand the performance of algorithms when working with Big Data?
	49	Diversity of medical data available	Medical records fall in the category of 'big data'. However, healthcare data is also multi-modal and extremely complex and noisy. A huge data science research challenge is to find methods to incorporate data of different types and from different sources.

50	How to improve the relevance of the routine record	Methods are needed to address the inadequate attention paid to outcome measurement in clinical care, research, and consumer health applications, in order to reduce avoidable waste in health data analytics.
51	Validity and utility in practical contexts	Tools and methods developed must have validity and utility for clinicians and medical professionals in practical contexts. Factors such as technical infrastructure, required expertise, data quality and usage context must be considered in their design.
52	Enrich health data with rich context & provenance	Representation of data at the point of care is disappointing. For trrue Learning Health systems clinicians need rich context/provenance, as well as the ability to synthesise new best practice through system learning. Secondary use data isn't sufficient.

Colour	#	Title	Description
Brown	53	Use of Genetic Data	New methods are needed to store, access and interpret genetic data and its impact on human health.
	54	integration with biochemical models	Making genetic or protein databases with more knowledge of function in the cell, of facilitate hypothesis formation and reduce false positives on data mining.
	55	Modelling the variability of human anatomy	There are millions of images of parts of human bodies in hospital databases. It should be possible to use them to build statistical models of how human anatomy varies across the population. However, the data is very variable and only weakly annotated.
	56	Identification of disease subtypes	Large data sets if linked data sets allow us to identify disease subtypes that are currently not captures by existing disease categories (e.g. Cancer grade). The identification of these and the associated statistics pose significant challenges.
	57	Discovering complex precursors for risk assessment	Opportunity: simultaneous emergence of large clinical bioresources (eg UKBB), distr'd powerful computing platforms, analytics algorithms, & medical signal/img analysis. Challenge: discover complex, heterogeneous sets of 'measures' predicting disease risk.
	58	Data analytics targeted pre- diabetes intervention	Data analytics can be used to predict which people are more likely to develop diabetes, based on various lifestyle markers, and anti-diabetic medication can be prescribed to this population. This is a goal of the Diabetes Prevention Programme.